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EPIC L2 Cloud Product List

1) EPIC Cloud Mask

2) Oxygen A-band Cloud Effective Pressure

3) Oxygen A-band Cloud Effective Height

4) Oxygen B-band Cloud Effective Pressure

5) Oxygen B-band Cloud Effective Height

6) Cloud Optical Thickness – assuming liquid phase

7) Cloud Optical Thickness – assuming ice phase

8) Cloud Effective Temperature

9) Most likely cloud thermodynamic phase



EPIC vs GEO/LEO composites: Effective Cloud Pressure

Effective cloud pressure are generally higher (lower altitude) than the physical cloud top; factors contribute 
to the A- and B-band differences include penetration depths differences, surface albedo differences, 
geolocation uncertainties, cloud evolution etc.
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Radiative Transfer and Photon Path Length Distribution

Equivalence theorem: to separate absorption from scattering

Where p(l) is photon path length distribution with path length l
Kv is gaseous absorption coefficient
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The coefficients are determined through nonlinear regression.



On Cloud Top Pressure: epic_1b_20160725001751_01.h5



FWHM: 678.80nm~680.48     Central: 679.64 nm FWHM: 687.11nm~687.97     Central: 687.54 nm

EPIC O2 B Band Filter function
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A forward RT model: accuracy vs. speed

A fast radiative transfer model [Min and Harrison 2004; Duan et al, 2005]:



A fast RT model: k vs. double k
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A fast RT model: results (A-band)



A fast RT model: results (A-band)



A fast RT model: results (B-band)--- clear sky



A fast RT model: results (B-band)
Cloud tau =2,  1.5~2.9 km
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A fast RT model: results (B-band)



Summary:
 A fast radiative transfer model has been developed for simulating high-resolution 

oxygen B-band absorption band. 

 The first order scattering radiance is calculated accurately by using a higher number 
of layers. The multiple-scattering component is extrapolated and/or interpolated 
from a finite set of calculations in the space of two integrated gaseous absorption 
optical depths to the wavenumber grids: a double-k approach. 

 The double-k approach substantially reduces the error due to the uncorrelated 
nature of overlapping absorption lines: an accuracy of 0.5% for most applications 
under all-sky conditions and 1.5% for the most challenging multiple-layer cloud 
systems (99% of spectrum below 0.5%). 

 This results in around a hundred-fold time reduction with respect to the standard 
forward radiative transfer calculation. It provides a powerful tool for DSCOVR EPIC B-
band observation data analysis.


